proatom.ru - сайт агентства ПРоАтом
К юбилею атомной отрасли
  Агентство  ПРоАтом. 20 ЛЕТ с атомной отраслью!              
Навигация
· Главная
· Все темы сайта
· Каталог поставщиков
· Контакты
· Наш архив
· Обратная связь
· Опросы
· Поиск по сайту
· Продукты и расценки
· Самое популярное
· Ссылки
· Форум
Журнал
Журнал Атомная стратегия
Подписка на электронную версию
Журнал Атомная стратегия
Атомные Блоги





Обсудим?!
ОЯТ не перерабатывать! Только захоранивать, не нарушая оболочек твэлов
Согласен
Согласен с оговорками
Не согласен

Результаты
Другие опросы
Подписка
Подписку остановить невозможно! Подробнее...
Задать вопрос
Наши партнеры
PRo-движение
АНОНС
PRo Погоду

Сотрудничество
Редакция приглашает региональных представителей журнала «Атомная стратегия» и сайта proatom.ru. Информация: (812) 438-32-77, E-mail: pr@proatom.ru Савичев Владимир.
PRo Рекламу

[27/10/2009]     Вибрация взвела курок к началу аварии

В.Г.Вереземский, нач. лаборатории «Исследования ресурса оборудования» ВНИИАЭС

Из комментариев к акту расследования Ростехнадзора аварии на ГА2 СШ ГЭС не ясно, что же непосредственно с позиции техники явилось причиной аварии. Изменить строй в стране, уничтожить коррупцию и другие безобразия мне не под силу, поэтому остановлюсь на более близком мне – как предупреждать или избегать возникновения аварий, используя научные и технические достижения.



Фото и записи контролируемых параметров из материалов прессы и Интернета дают основание полагать следующее. Если бы шпильки крепления турбины оказались прочными и лопатки направляющего аппарата открылись бы как положено, то авария случилась бы позже. Основной причиной аварии явилось разрушение шпилек и, возможно, элементов сервомоторов от  вибрации, которая контролировалась, но, видимо, не была градуирована хотя бы на нормальную, опасную, аварийную с обязательным требованием остановки ГА по штатному или аварийному вариантам.
Скорее всего, шпильки рассчитывались на усталость, а вот элементы и крепление сервомоторов – вряд ли. Методика расчета на усталость металла в 60-70-е годы прошлого века, да и в настоящее время, принята на основе  детерминистской модели металла с применением линейного суммирования усталостных повреждений с коэффициентами запаса. Эта методика фактически не учитывает очень негативного влияния вибрации на долговечность.

А между тем, в справочнике [1] однозначно отмечается, что «расчет по коэффициентам запаса прочности при нерегулярном нагружении, менее предпочтителен, по сравнению с расчетом на долговечность по параметру вероятности разрушения, так как расчетные значения коэффициентов запаса не дают представления о надежности и долговечности детали».

Давно известно, что на предельную долговечность металла при нескольких циклических нагрузках активно влияет так называемая история нагружения с разными амплитудами напряжения. Однако до моих работ начала 90-х годов [2,3] и расширенного изложения их в 2006-2008 годах [4-5] объяснения этому эффекту не было. Да и в настоящее время мои работы в расчет не принимают, так как объяснение связано с вероятностным влиянием и ставит под сомнение точность или консерватизм расчета действующих методик.

Для специалистов и людей, применяющих известный переход к безразмерным результатам при обработке и использовании данных испытаний, приведу несложные  рассуждения, которые показывают необходимость вероятностной методики оценок долговечности.

В результате статистических испытаний серии одинаковых образцов металла при постоянной амплитуде напряжения σа= Const получают  функции распределения F(N), где N – число циклов до разрушения. В качестве первого приближения в действующей методике за число циклов до разрушения при   σа берут математическое ожидание [N] функции распределения F(N).

Для того, чтобы рассчитать деталь при 2-х нагрузках с σа,1  и σа,2 берут [N]1 и [N]2 и определяют скалярные кванты повреждений (за один цикл) при   σа,1  и σа,2  равные а1 = 1/[N]1 и а2 = 1/[N]2 и далее суммируют повреждения от n1 и n2 циклов,  например, n1а1 + n2а2= Σа. Это является линейным суммированием повреждений, при котором порядок нагружения и суммирования не влияет, даже если к каждому слагаемому ввести коэффициенты запаса.

При вероятностном подходе всё выглядит по-другому. Каждая из функций  F1(N) и F2(N) является ресурсной характеристикой, и каждая имеет своё пороговое число циклов N01 и N02 и свои стандарты разброса. Функции  F1(N) и F2(N), как и в действующей методике, нормируются по их математическим ожиданиям [N]1 и [N]2, в результате чего функции  F1(N) и F2(N) переходят в функции разрушающих повреждений F1(а) и F2(а). При этом пороговые числа циклов N01 и N02 переходят в пороговые разрушающие повреждения а01 =  N01/[N]1 и а02 = N02/[N]2, которые в общем случае будут различными, а функции F1(а) и F2(а) будут иметь общую шкалу и общий ноль.

Подготовка к построению произвольных ресурсных характеристик из пакетов циклов имеющих функции F1(а) и F2(а) завершена. Такие функции уже можно суммировать.
На рис.1 приведены составные функции плотности вероятности разрушающих повреждений составленные из F1(а) и F2(а) с разными граничными повреждениями между пакетами и в разной последовательности 1–2 и 2–1.


Рис.1

На внимательный взгляд построенные функции плотности вероятности при режимах 1-2 и 2-1 получаются сложными с противоположной асимметрией, что является следствием учёта истории нагружения и пороговых значений разрушающих повреждений. Точками обозначены математические ожидания полученных функций, по которым можно судить о точности расчетов выполняемых с использованием линейного суммирования усталостных повреждений.

Этот вывод очень хорошо корреспондируется с [1] о предпочтительности использовании вероятностного подхода, где отмечается «ошибка в оценке долговечности при расчете по линейной гипотезе суммирования усталостных повреждений может достигать до 5–10 – кратной (не в запас долговечности)».

Возвращаясь к теме аварии на СШ ГЭС следует отметить, что пороговое разрушающее повреждение а0 от вибрации существенно ниже аналогичного порогового повреждения от квазистатической нагрузки напора плотины. Чем дольше действовала вибрация на шпильки и элементы сервомоторов, тем накапливалась большая вероятность образования в них трещин от вибрации и тем меньше была нужна квазистатическая нагрузка от потока для начала разрушения первой, второй и других шпилек ГА2.

Вибрация как бы «разрыхляет» металл на микро уровне и повышает вероятность разрушения. Вибрация «взвела курок», а толчком к разрушению ГА2 стало начало его штатной остановки.

При аварийной остановке с закрытием верхних затворов, если и случилась бы авария, то без жертв и больших разрушений. Цена разработок и самого перехода на вероятностные расчеты значительно ниже тех 40 млрд, которые  отпускает государство на восстановление (хотя уйдет больше).

Необходима разработка норм на вибрацию, диагностика, фиксация истории нагружения, регулярная вероятностная оценка остаточного ресурса, то есть внимательная эксплуатация. Примеры есть, надо только изучать их и использовать.

Обоснование необходимости перехода на вероятностную форму кривой усталости, учитывающую историю нагружения

Стареет оборудование энергетических объектов советского периода. Новые объекты проектируют, сооружают и контролируют их эксплуатацию по тем же старым нормам и методикам.

Анализируя случаи повреждения металла крупного оборудования, нетрудно обнаружить упущение (скорее всего исторически сложившееся) в действующей методике расчёта прочности, долговечности, надёжности, а, следовательно, безопасности объектов. Предлагаемые изменения в нормативные документы направлены на учёт истории нагружения при расчётах на циклическую прочность, что уже многие годы считается важным фактором, влияющим на точность расчёта долговечности элементов, то есть на определение эксплуатационного ресурса.

Авария на СШ ГЭС случилась по причине отсутствия необходимого контроля остаточного ресурса элементов крепления и управления турбиной при наличии вибрации. В настоящее время считается, что в принципе разрушение (например, шпилек крепления) может произойти только из-за кратковременных больших усилий без учёта влияния вибрации, которая, как известно, долгое время предшествовала моменту начала аварии.

Циклическая прочность металла в настоящее время базируется на представлении его как однородной среде, которая обладает свойством циклической усталости. Традиционную форму кривой усталости получают в результате испытаний 2-3-х стандартных образцов металла при разных уровнях напряжений в режиме с постоянной амплитудой.

Испытания на временную прочность для получения σв практически соответствуют испытаниям на циклическую прочность, но только при одном цикле нагрузки. В расчетах на статическую прочность обычно используют минимальное значение σв  полученное при статистических испытаниях.

В [1] отмечается, что «по многочисленным данным коэффициенты вариации предела прочности сталей vσв  изменяются в пределах 3 – 12%, а распределение величин  σв на множестве всех плавок достаточно хорошо соответствует нормальному закону». Для относительно небольшой выборки из 20-40 одинаковых образцов, «испытанных при одной и той же амплитуде напряжений в совершенно идентичных условиях, отношение наибольшей долговечности к наименьшей может достигать  1000».

Для наглядного представления о характере разброса разрушающих чисел циклов на координатное поле (lgN , σa) наносят как результаты статистических испытаний на временную прочность (функцию распределения F(σв) на ось σа), так и результаты испытаний на циклическую прочность (функции распределения разрушающих чисел циклов F(N) при σа=Const).

Для определения циклической долговечности при нескольких разных  σа с использованием только средней кривой усталости [N]= f(σa) в настоящее время принята гипотеза линейного суммирования усталостных повреждений (ЛСУП). В ней предполагается, что накапливаемое в металле за один цикл повреждение соответствует величине 1/N, где – N среднее экспериментальное разрушающее число циклов  или МО [N] функций распределения результатов испытаний F(N) при σа=Const .

Гипотеза ЛСУП вполне логична, если принимать металл за однородную среду со средней кривой усталости соответствующей [N]= f(σa). Для учета разброса разрушающих чисел циклов при расчетах долговечности к кривой для  [N]  вводят коэффициенты запаса, то есть переходят к пороговой кривой, но при этом также используют гипотезу ЛСУП [6].

Однако в многочисленных экспериментальных исследованиях при нескольких нагрузках гипотеза ЛСУП не подтверждается [1,7-9] и  наблюдаются парадоксы [10].
Уже предложено более двух десятков гипотез по нелинейному суммированию повреждений, но применяется всё же ЛСУП как самая простая [10].  И в том и в другом случаях, ЛСУП не подтверждается как для единичных опытов, так и для средних значений из результатов статистических экспериментов [9, 10].

Предлагаемый подход [2-5, 11-12] позволяет с позиции теории вероятности объяснить поведение экспериментальных результатов, а также парадоксы зависящие от истории или последовательности нагружения как осредненных, так и единичных опытов опираясь на следующее.

1. Квантильные кривые усталости (рис.2) показывают, что увеличение пороговых чисел циклов  N0 происходит неравномерно. Среднеквадратический разброс логарифмов разрушающих чисел циклов SlgN при уменьшении σa сначала уменьшается (в квазистатической области), затем наблюдается минимальное значение SlgN в диапазоне [N]=102-105 циклов (мало цикловая область), а при [N]>105 разброс lgN непрерывно возрастает (много цикловая область).
 
                      Рис.2. Квантильные кривые усталости

2. По характеру разрушения металла кривые усталости также в первом приближении могут быть подразделены на такие же три области [13]: квазистатическую до [N]=102, мало цикловую ([N]=102-105) и много цикловую [N]>105 (рис.2).

Характер разрушения металла в областях различный [13,14] - до [N]=102 наблюдается квазистатическое разрушение с образованием шейки, вязко-хрупкое разрушение имеет место в мало цикловой области и хрупкое разрушение в много цикловой области.

3. Экспериментальные функции распределения разрушающих чисел циклов F(N) при σа=Const  являются наиболее полными ресурсными характеристиками для амплитуд σа, которые отражают реакцию внутреннего строения металла на нагрузку или свойство металла.

Все возможные сложные режимы циклических нагрузок могут быть представлены набором из  i  пакетов циклов с разными σа. При этом каждая функция распределения Fi(N)  пакета кроме порогового числа циклов N0i, очевидно, будет иметь МО, СКО равное SlgN,I, коэффициенты асимметрии, эксцесса. Если известно, что Fi(N)  имеют близкие аналитические законы распределения, то они могут быть восстановлены по МО, СКО.

Принципиально различными в первом приближении могут быть три типа режимов:
- режим, состоящий из двух пакетов циклов при последовательности 1 - 2 и обратной 2 – 1;
- режим из одинаковых блоков (блок из одинаковых пакетов);
- режим со случайной последовательностью пакетов циклов.

При нескольких нагрузках всегда какая-то нагрузка будет первой, а потому пороговое число циклов N01 результирующей ресурсной характеристики и её начальная часть будет соответствовать первой функции F 1(N)  и только затем другим Fi(N)  в последовательности их приложения.

4. Квантильные кривые в пространстве (lgN, σa, Р), где Р – вероятность разрушения, соответствуют экспериментальным функциям распределения результатов испытаний образцов, то есть фактически определяют циклические механические свойства металла на усталость для режима σа=Const.
В такой традиционной форме квантильные кривые усталости являются размерными по отношению к разрушающим числам циклов N, которые функционально связаны с σа  и эти кривые не могут быть использованы для прогнозных оценок ресурсных характеристик при нескольких нагрузках.

5. Прогнозирование ресурсных характеристик при нескольких нагрузках или построение функций вероятности разрушения для любого их количества будет возможно в том случае, если все Fi(N) будут иметь общую меру, а суммирование уже будет происходить по вероятности разрушения.

При кривой усталости [N]= f(σa) в качестве общей меры принято повреждение разрушения при [N] и линейное суммирование повреждений. Логично эту меру сохранить и для МО Fi(N) пакетов, но при этом суммировать ещё и вероятности разрушения.

Для такого вероятностного суммирования при наличии разных σа все  Fi(N) пакетов следует преобразовать в безразмерные функции распределения разрушающих  повреждений  Fi(ā)  путем  центрирования 

 lgN - lg[N]  = lgN/[N]= lgā

и изобразить их на одном координатном поле с единой шкалой среднего разрушающего повреждения lgā.

При этом квантильные кривые усталости будут иметь общую меру  для всех Fi(N) и, таким образом, приобретут новую форму (рис.3), которая  уже отражает постоянство средних значений  повреждений  и их вероятностей.

                          Рис.3. Кривые усталости разрушающих повреждений

Детерминированная или средняя кривая усталости [N]= f(σa) представляет собой предельный случай, когда все SlgN  пакетов нагрузки равны нулю, то есть все Fi(N) описываются ступенчатыми функциями распределения. В этом случае на кривой [N]= f(σa) вероятность разрушения и повреждение равны единице. Для общего случая      SlgN >0 на кривой [N]= f(σa) вероятность разрушения будет ровна 0,5, а повреждение будет равно единице.

6. В результате преобразования Fi(N) в Fi(ā) квантильные кривые усталости переходят в пространство (lgā, σa, Р) , в котором на одной из квантильных кривых сохраняются постоянные значения средних повреждений ā всех функций Fi(ā).

Таким образом появилась новая графическая форма квантильных кривых усталости (рис. 3) в пространстве (lgā, σa, Р), в которой при суммировании разрушающих повреждений  происходит последовательная вероятностная коррекция результирующей ресурсной характеристики (функции вероятности) для любого режима пакетной нагрузки на шкале lgā.

Функции вероятности Ver(ā) [5,11-12] при этом представляют собой аналоги экспериментальных функций распределения наступления предельного состояния принятого для получения Fi(N), но уже для заданного cложного режима из нескольких нагрузок.

7. В аналитическом представлении для функций вероятности четко отражен происходящий процесс вероятностной коррекции суммарной ресурсной характеристики при последовательном накоплении разрушающих повреждений ā.

Общее выражение для функции вероятности при многопакетной нагрузке, состоящей из m пакетов в определенной последовательности от 1 до m, записывается  в виде
    





ā   - граничные повреждения между пакетами;
i(ā) -  усечённая слева по пороговому повреждению ā= N0i/[N]iо функция распределения Fi(ā).

8. Функции прочностной надёжности Р(ā) исследуемых элементов конструкции (расчетных точек) для конкретного режима нагрузки будут представлять собой дополнения к функциям вероятности

Р(ā) = 1 - Ver(ā).
                   
С помощью функций Р(ā) возможно оценивание как γ – процентного ресурса для любого  выбранного заранее значения γ , так и определение надёжности оценки циклической прочности по известному разрушающему повреждению ā.

Заключение. Предлагаемый подход и новая форма представления кривой усталости дают возможность выполнять расчетные оценки надежности циклической прочности и определять ресурсные характеристики в виде функций вероятности, которые аналогичны по предельному состоянию экспериментальным функциям распределения для конкретного режима пакетной нагрузки.

Таким образом, для любого элемента – расчетной точки конструкции по режиму нагрузки в виде последовательности от i = 1 до m пакетов циклов с амплитудами σai , может быть рассчитана функция вероятности достижения предельного состояния принятого в «Нормах…» [6] и, следовательно,

функция прочностной надежности [11]. При этом по структурной схеме конструкции [15] и функциям вероятности для её элементов, вполне возможно рассчитать функцию прочностной надежности для всей конструкции.

В результате рассмотрения различных вариантов режимов нагрузки можно определить наиболее консервативную функцию прочностной надежности. По этой функции либо оценивать риск разрушения γ в конце любого назначенного срока эксплуатации, либо по заданной, то есть допустимой величине  γ,  определять остаточную долговечность или ресурс с этим допустимым риском.


Список использованных источников
1. Когаев В.П., Махутов Н.А., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность, «Основы проектирования машин», Справочник, М., Машиностроение, 1985, -224 с.
2. Вереземский В.Г. О прогнозировании показателей надежности малосерийного и уникального оборудования. Надежность и контроль качества, 1990, №9, с. 53-61.
3. Вереземский В.Г. Вероятностное суммирование усталостных повреждений. Проблемы машиностроения и надежности машин, АН СССР, 1991, №3, с. 67-72.
4. Вереземский В.Г. Cтатистика прочностных свойств металла и её влияние на представление об усталостной долговечности элемента конструкции, Химическое и нефтегазовое машиностроение, №2, 2007, с. 38-42.
5. Вереземский В.Г. Вероятностная гипотеза суммирования усталостных повреждений и её обоснование, Химическое и нефтегазовое машиностроение, №10, 2007, с.41-44.
6. Нормы расчета на прочность оборудования и трубопроводов атомных энергетических установок, ПНАЕ Г-7-002-89.-М.: Энергоатомиздат, 1989, с.528.
7. Болотин В.В. Ресурс машин и конструкций, -М.: Машиностроение, 1990,- 448 с.
8. Кордонский Х.Б., Фридман Я.Ф. Некоторые вопросы вероятностного описания усталостной долговечности. Заводская лаборатория, 1976, №7, с. 829-847.
9. Благовещенский Ю.Н. О прогнозе средней долговечности при блоковых нагружениях, Проблемы надежности в строительной механике, Материалы к 3-ей Всесоюзной конференции по проблемам надежности в строительной механике, Вильнюс, май-июнь 1971.
10. Коллинз Дж. Повреждения материалов в конструкциях. Анализ. Предсказание. Предотвращение. Москва. «МИР». 1984, :»; с.
11. Динамика и прочность водо-водяных энергетических реакторов, Серия «Исследования напряжений и прочности ядерных реакторов» Отв. ред. Н.А.Махутов, М., Наука, 2004, 440 с.
12. Вереземский В.Г. Предельные состояния при расчетах на циклическую прочность и оценках ресурса, Химическое и нефтегазовое машиностроение, №7, 2006, с. 33-36.
13. Владимиров В.И. Физическая природа разрушения металлов. М. Металлургия, 1984, 280 с.
14. Дж. Богданофф, Ф. Козин Вероятностные модели накопления повреждений, М., Мир, 1989, 344 с.
15. Шарый Н.В. и др. Прочность основного оборудования и трубопроводов реакторных установок ВВЭР. М.: ИздАТ, 2004, 496 с.
 

 
Связанные ссылки
· Больше про Безопасность и чрезвычайные ситуации
· Новость от Proatom


Самая читаемая статья: Безопасность и чрезвычайные ситуации:
Япония. Авария. Мнение комментатора.

Рейтинг статьи
Средняя оценка: 4.5
Ответов: 8


Пожалуйста, проголосуйте за эту статью:

Отлично
Очень хорошо
Хорошо
Нормально
Плохо

опции

 Напечатать текущую страницу Напечатать текущую страницу

"Авторизация" | Создать Акаунт | 2 Комментарии | Поиск в дискуссии
Спасибо за проявленный интерес

Re: Вибрация взвела курок к началу аварии (Всего: 0)
от Гость на 28/10/2009
.... в принципе, ничто не мешает этот механизм положить в ПО и оперативно оцениявать  расход ресурса оборудования, но проблема в одном - как и чем мерять? Как - это вопрос представительности снимаемой информации. Чем - это вопрос контролепригодности объекта. Ни то ни другое нашими проектантами не было заложено, поэтому - вопрос для нынешнего менеджмента практически неразрешимый....


[ Ответить на это ]


Re: Вибрация взвела курок к началу аварии (Всего: 0)
от Гость на 06/11/2009
Вероятностный расчет - дело полезное, однако на практике без оперативной диагностики не обойтись. На СШ ГЭС, судя по вему, при на выходе мощность слишком часто "елозили" в области параметрического резонанса. Причем было известно, что именно ГА №2 "славится" экстремальными вибрациями. Перед аварией НЧ биения достигли такого уровня, что их зарегистировали сейсмологи! Усталостное разрушение произошло фактически мгновенно, хотя явно предаварийная ситуация длилась порядка нескольких десятков минут...

ВолОв А.Н. www.uni-scope.com [www.uni-scope.com]


[ Ответить на это ]






Информационное агентство «ПРоАтом», Санкт-Петербург. Тел.:+7(812)438-3277
E-mail: info@proatom.ru, webmaster@proatom.ru. Разрешение на перепечатку.
Сайт построен на основе технологии PHP-Nuke. Открытие страницы: 0.09 секунды
Рейтинг@Mail.ru